POTENTIAL NOVEL UPFRONT TREATMENT PARADIGMS FOR PATIENTS WITH PTCL

Owen A. O'Connor, M.D., Ph.D.

Director, Center for Lymphoid Malignancies Professor of Medicine and Developmental Therapeutics The New York Presbyterian Hospital Columbia University College of Physicians and Surgeons New York, N.Y.

> 1st Postgraduate Lymphoma Conference Rome, Italy March, 2105

A Comprehensive Cancer Center Designated by the National Cancer Institute

POTENTIAL NOVEL UPFRONT TREATMENT PARADIGMS FOR PATIENTS WITH PTCL

- Strategies for Up-Front Management
- Targeting Epigenetic Operations in TCL: An HDACi Backbone
- Novel Doublet Based Regimens
 - Hypomethylating agents and HDAC inhibitors
 - Pralatrexate and HDAC inhibitors
 - Aurora Kinase Inhibitor and HDAC inhibitors
- Next Steps

IS ADDING ANY DRUG TO A CHOP BACKBONE THE ANSWER?

Addition Drug	No. of Patients	ORR CR Rate	OS	PFS/DOR	Comments
CAMPATH (Gallamini et al. 2007)	24	75% 71%	53% @ 2 yrs	2 year FFS = 48%	Med F/U = 16 months Infections common CMV (9%)reactivation
CAMPATH (Kim et al. 2007)	20	80% 65%		1 year EFS = 43%	Med F/U = 8 months Febrile neutropenia (55%), CMV (25%)
Bortezomib (Kim et al. 2012)	46	76% 65%	47% @ 3yrs	3 year PFS = 35%	Well tolerated Minimal neuropathy
Denileukin difitox (Foss et al. 2013)	49	65% 55%	65% @ 2 yrs	Me.d PFS = 12 months 2 year PFS 42%	Med F/U = 22 mo
Vorinostat (Oki et al. 2013)	12 evaluable	100% ? 100% ?	Not reached	2 year PFS = 79% Med PFS = 31 months	Phase 1 Med F/U = 27 months
Everolimus (Kim et al. 2013	15	100% 57%	Not reported	13/14 patients relapsed immediately after or shortly after therapy	Phase 1 study Limited duration of benefit data
Bevacizumab (Ganjoo et al. 2014)	44 evaluable	90% 49%	Med OS = 22 months	1 year PFS = 44% Med. PFS = 7.7 months	Med F/U = 3 years
Romidepsin (Cupuis et al. 2014)	35	68% 51%	At 18 months = 76%	18 month PFS = 57%	Med F/U = 17.5 months 18 mo PFS 57% 3 pts had significant cardiac events

International PTCL Project: At 5 year, OS = 32% and FFS = 22%

STRATEGIES TO ADVANCE THE FRONT-LINE TREATMENT OF PTCL

CHOP Addition Studies

Pros	Cons
Relatively easy to do	Does adding 1 drug to 4 make real difference?
THE regulatory path	Backbone widely considered poor
Assures 'some' SOC component to care	Toxicity of 4 - drug combo could limit new drug dosing
Lots of experience with the regimen in lymphoma	Its CHOP

Novel : Novel Platforms

Pros	Cons
Exploits drugs with established activity in disease	Starting from scratch
Can target specific pathways/lesions	Takes time
Prospects for precision therapy (CD30, TET2, IDH2)	Completely unknown efficacy and toxicity
Could produce viable options in front-line and R/R setting	Rare disease mandates larger collaborations

SINGLE AGENTS FOR RELAPSED OR REFRACTORY PERIPHERAL T-CELL LYMPHOMA <100 PATIENTS ACCRUED IN 17 YEARS!

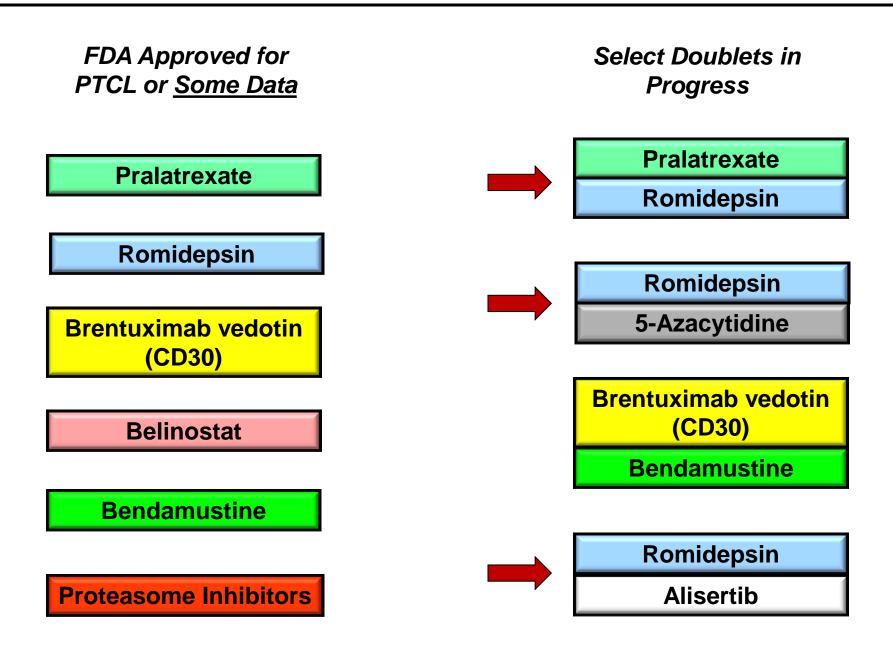
- Limited data for single-agent treatment of relapsed/refractory NHL
 - Most studies are small, uncontrolled, and single center
 - No central review of histology or response rate
 - Accrued PTCL patients across all studies (1991-2008) = 88 (5/yr)

Agent	Author, year*	Total pts accrued	No. PTCL accrued	Response in PTCL	Single or multi-center
Pentostatin	Dearden, <i>Br J Cancer</i> 1991	68	6	0/6	single
Gemcitabine	Zinzani, <i>Ann Oncol</i> 1998	13	8	5/8	single
Gemcitabine	Sallah, <i>Br J Haematol</i> 2001	10*	4		single
Alemtuzumab	Enblad, <i>Blood</i> 2004	14	14	5/14	multi-center
Pentostatin	Tsimberidou, <i>Cancer</i> 2004	42	8		single
Denileukin	Dang, Br J Haematol 2006	27	27	13/27	single
Bortezomib	Zinzani, <i>JCO</i> 2007	12	2	1/2	single
Lenalidomide	Reiman, <i>Blood</i> 2007	10	10	4/10	multi-center
Nelarabine	Czuczman, <i>Leuk Lymphoma</i> 2007	19	8	1/8	multi-center
Pralatrexate	O'Connor, <i>JCO,</i> 2009	57	30	14/26	single

Where is the data that other drugs are equivalent??

SINGLE AGENTS FOR RELAPSED OR REFRACTORY PERIPHERAL T-CELL LYMPHOMA 492 PATIENTS IN LAST 6 YEARS

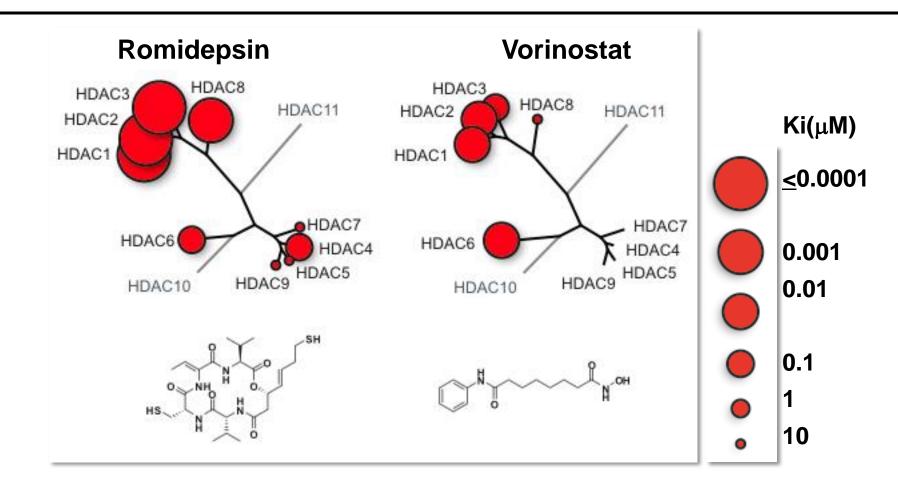
- Single-agent treatment of relapsed/refractory PTCL
 - Studies mostly conducted in PTCL
 - Mostly multicenter
 - About 82 patients per year


Agent	Author, Journal, Year	Total pts accrued	No. PTCL accrued	Response in PTCL	Single or multi-center
Pralatrexate	O'Connor, JCO, 2009 (Phase 1)	57	30	14/26 (54%)	Single
Pralatrexate	O'Connor, JCO, 2011	109	109	32/109 (29%)	Multi-center
Romidepsin	Piekarz Blood, 2011	47	47	17/45 (38%)	Multi-center
Romidepsin	Coiffier, JCO, 2011	130	130	33/130 (25%)	Multi-center
Brentuximab vedotin	Pro, JCO, 2013	58	58	50/58 (86%)	Multi-center
Belinostat	O'Connor, JCO, 2015	120	120	31/120 (26%)	Multi-center

IS PTCL A DISEASE CHARACTERIZED BY EPIGENETIC LESIONS?

Gene/Protein	Function	Lymphoma	Reference
DNMT3A	DNA methyltransferase	Peripheral T-Cell Lymphoma	Couronne et al., NEJM. 2012
TET	Oxidation of methylated cytosines	Peripheral T-Cell Lymphoma	Lemonnier et al., Blood. 2012
IDH2	Metabolic pathway that controls KDM and TET through 2HG accumulation	Angioimmunoblastic T- Cell Lymphoma	Cairns et al., Blood. 2012
	Over-expression of HDAC2 and elevated H4 acetylation	Cutaneous T-cell Lymphoma	Marquard et al., Hematopatholo gy. 2008
SWI/SNF complex	ATP-dependent chromatin remodeler, regulates gene expression; inactivating	T-cell lymphoma	Yuge et al., Cancer Genet Cytogenetics
hSNF5/INI1/B AF47	mutations cause tumorigenesis		2000

and.....3 histone deacetylase inhibitors carry approvals only in T-cell lymphoma, suggesting a class effect in the disease.....but why?


BUILDING DOUBLETS : WHERE ARE WE?

HDAC INHIBITORS ARE NOT CREATED EQUALLY VARIABLE ROMIDEPSIN CONSISTENTLY SYNERGISTIC

Compound			Cell I	INE	
	t(h)	P12	PF382	H9	НН
	24	16.8	20.6	8.7	82.9
Panobinostat (nM)	48	6.4	6.1	4.9	18.7
	72	7.9	2.4	7.4	9.9
	24	2136	3052.1	1147.8	4725
Vorinostat (nM)	48	1109	886.7	501	635
	72	921.5	1066.4	874.9	425
	24	6.2	6.1	5	14
Romidepsin (nM)	48	2.4	1.7	2.1	2.6
	72	2.1	1.5	2.2	2.6
	24	386.9	267	108.1	240
Belinostat (nM)	48	99.9	135.7	35.7	67.6
	72	97.8	118.3	29.4	39
	24	>20	>20	>20	>20
Decitabine (µM)	48	>20	>20	>20	>20
	72	1.8	0.4	7.4	>20
	24	>20	>20	>20	>20
5-Azacytidine (µM)	48	>20	>20	>20	>20
	72	>20	>20	>20	>20

PHYLOGENETIC RELATIONSHIPS BETWEEN VORINOSTANT AND ROMIDEPSIN

Chemical Phylogenetics Of Histone Deacetylase Inhibitors Bradner et al. Nature Chem Biol 6:238 – 243, 2010

EVIDENCE FOR SELECT EMERGING DOUBLETS IN PTCL

Pralatrexate

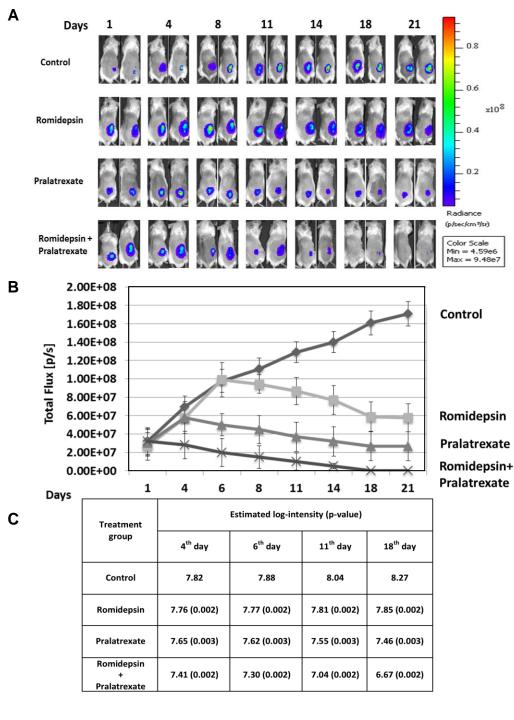
╋

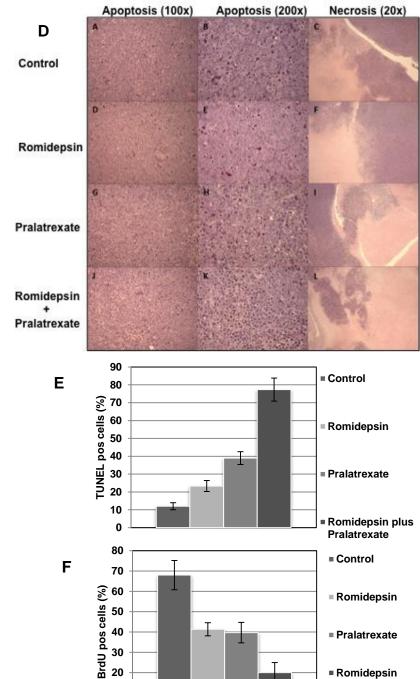
Romidepsin

PROPEL SUMMARY OF RESPONSE

70% of Responders did so in Cycle 1		Central Review (N=109)		Investigator Assessment (N=109)	
	•	n	Percent	n	Percent
Best	CR+CRu+PR	32	29%	43	39%
Response	CR	11	10%	17	16%
	CRu	1	1%	3	3%
	PR	20	18%	23	21%
	SD	21	19%	22	19%
	PD	40	37%	40	37%
	UE		2%	0	0%
	ND: off-treatment in Cycle 1	14	13%	5	5%

SINGLE-AGENT ROMIDEPSIN IN RELAPSED PERIPHERAL T-CELL LYMPHOMA: EFFICACY


Response	Independent Review Committee Analysis (n = 130)
Overall Response Rate	34 (26%)
Complete response	10 (8%)
Unconfirmed complete response	7 (5%)
Duration of Response	Median (Range)
Overall	12 (< 1.0-26.0+) months
Complete response/unconfirmed complete response	Not reached (< 1.0-26.3+) months)


- Responses reported in PTCL (not otherwise specified) (29%), angioimmunoblastic TCL (33%), and ALK1⁻ ALCL (24%)
- Similar response rates in patient subgroups according to number of prior therapies (< 3 vs. ≥ 3), prior SCT (yes vs. no), and refractory to most recent therapy (yes vs. no)

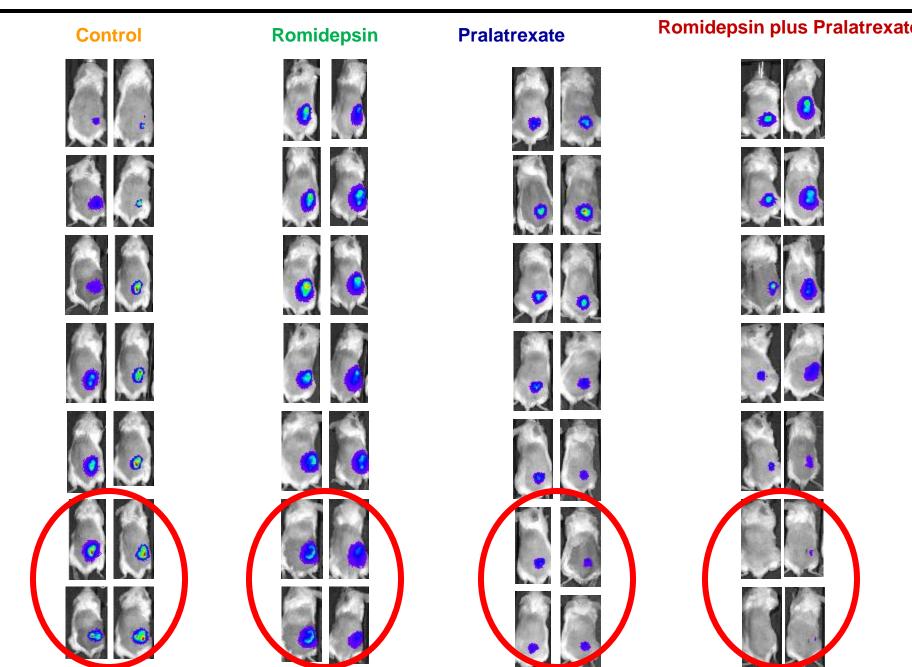
BELIEF RESPONSE ASSESSED BY CENTRAL REVIEW

	Efficacy Analysis Set (N=120)			
Response	n (%)	(95% CI)		
ORR	31 (26)	(18-35)		
CR	13 (11)	(6-18)		
PR	18 (15)			
SD	18 (15)			
PD	48 (40)			
NE	23 (19)			

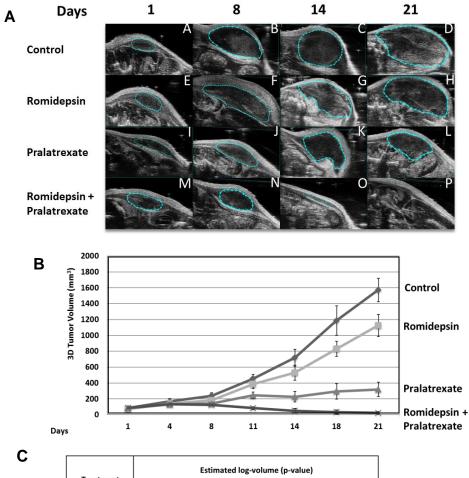
O. A. O'Connor et al., JCO, 2015; Submitted

40

10


0

Pralatrexate Romidepsin


Pralatrexate

plus

Bioluminescent Model of a Peripheral T-Cell Lymphoma

PDX + ROMI EFFECTIVE BASED ON 3-D ULTRASOUND UNDER 'BULKY' CONDITIONS

Treatment	Estimated log-volume (p-value)				
group	4 th day	6 th day	11 th day	18 th day	
Control	2.16	2.29	2.61	3.06	
Romidepsin	2.14 (0.48)	2.25 (0.1)	2.53 (0.004)	2.92 (<0.05)	
Pralatrexate	2.08 (0.012)	2.14 (<0.05)	2.27 (<0.05)	2.46 (<0.05)	
Romidepsin + Pralatrexate	2.06 (0.002)	1.96 (<0.05)	1.72 (<0.05)	1.39 (<0.05)	
Romidepsin +					

1 Cycle at 1/2 MTD

Treatment	Median survival	95% Confider	P-value from the		
group	time (in days) Lower		Upper	Log-rank test	
Control	21	19	26	Reference	
Romidepsin	25	21	29	0.0002	
Pralatrexate	40	35	44	<0.0001	
Romidepsin + Pralatrexate	51	37	56	<0.0001	

H9 T-cell lymphoma

Jain, S. et al. Clin. Cancer. Res., 2015

PHASE 1/2 STUDY OF PRALATREXATE PLUS ROMIDEPSIN IN LYMPHOMA 7 OF 7 PATIENTS WITH R/R PTCL ACHIEVE RESPONSE (4 CR)

<u>Cohort</u>	Patient	Disease	Prior Treatment	<u>Toxicities</u>	<u>Response</u>
1 10mg/m ² Pralatrexate 12mg/m ² Romidepsin	1	ALCL Alk (-), Multiple Myeloma, MF	6 lines of prior treatment	No DLT	CR
Days 1,8,15(Q28)	2	Hodgkin's Lymphoma	14 lines of prior treatment	No DLT	SD
	3	Intestinal T-Cell Lymphoma	1 lines of prior treatment	No DLT	PR
2a 15mg/m ² Pralatrexate 12mg/m ² Romidepsin	1	T-Cell Lymphoma	2 lines of prior treatment	No DLT	PR
Days 1 & 8(Q21)	2	ATLL	2 lines of prior treatment	No DLT	CR
	3	Follicular Lymphoma	4 lines of prior treatment	No DLT	PR
2b	1	CD4+ T-Cell lymphoma	1 line of prior treatment	No DLT	PR
15mg/m ² Pralatrexate 12mg/m ² Romidepsin Days 1 & 15(Q28)	2	Follicular Lymphoma	9 lines of prior treatment	No DLT	NE
	3	Follicular Lymphoma	3 lines of prior treatment	No DLT	PR
3a 15mg/m ² Pralatrexate	1	Follicular	5 lines of prior treatment	DLT – (Thrombocytopenia, Plts=17)	PR
14mg/m ² Romidepsin	2	SPTL-AB	2 lines of prior treatment	DLT - (Pancytopenia, Plts=4)	PR (PET neg)
Days 1 & 8(Q21)	3	Burkitt's	3 lines of prior treatment	DLT - (Neutropenia, ANC=.244)	POD
3b 15mg/m ² Pralatrexate	1	PTCL	2 lines of prior treatment	No DLT	CR
14mg/m ² Romidepsin Days 1 & 15(Q28)	2	DLBCL, CML	3 lines of prior treatment	DLT - (Thrombocytopenia, Plts=10)	NE
	3	ALCL, ALK (-)	2 lines of prior treatment	DLT - (Thrombocytopenia, Plts=3)	NE

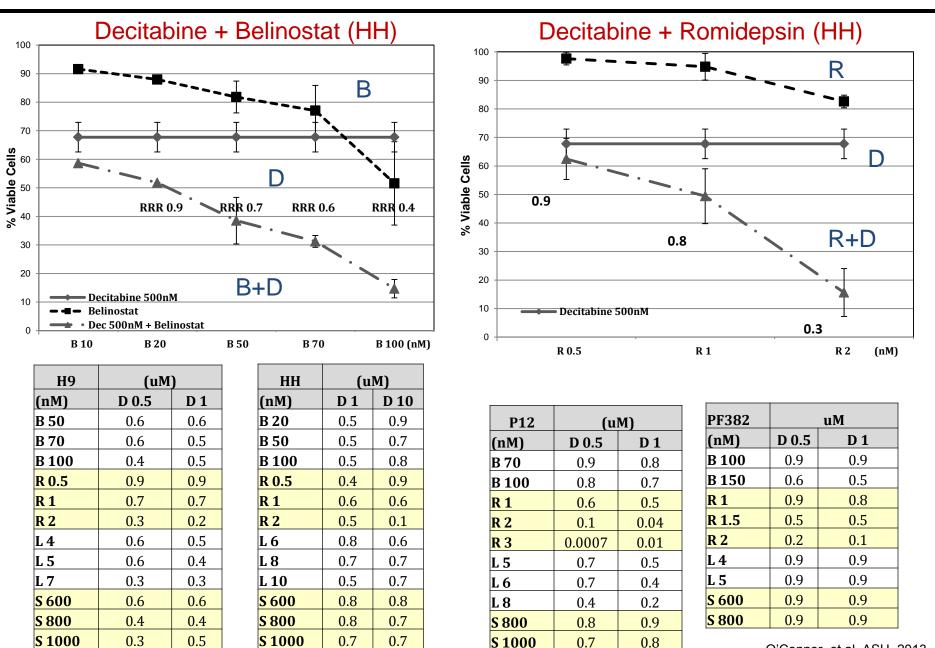
Pralatrexate plus Romidepsin in Lymphoma

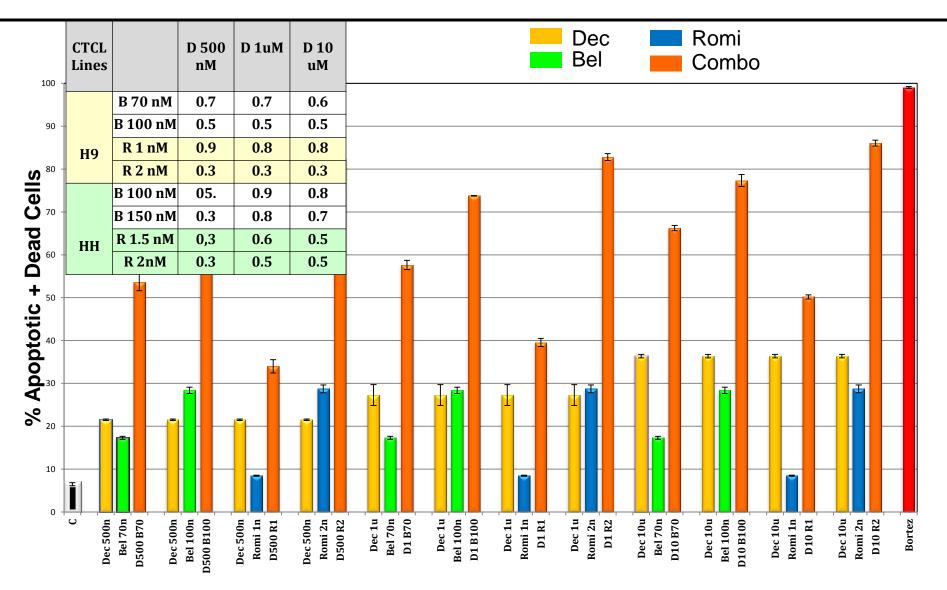
7 OF 7 PATIENTS WITH R/R PTCL ACHIEVE RESPONSE (4 CR)

<u>Cohort</u>	Patient	Disease	Prior Treatment	Toxicities	<u>Response</u>		
4a 20mg/m² Pralatrexate 12mg/m² Romidepsin	1	Hodgkin's Lymphoma	16 lines of prior treatment	No DLT	POD		
Days 1 & 8(Q21)	2	Sezary Syndrome	5 lines of prior therapy	DLT – Grade 3 oral mucositis	TBD		
	3		Cohort Ex	hort Expansion			
4b 20mg/m ² Pralatrexate	1	Hodgkin's Lymphoma	11 lines of prior treatment	No DLT	POD		
12mg/m ² Romidepsin Days 1 & 15(Q28)	2	ATLL	3 lines of prior treatment	No DLT	TBD		
	3						
5a 25mg/m² Pralatrexate	1						
12mg/m ² Romidepsin Days 1 & 8(Q21)	2						
	3						
4b 25mg/m ² Pralatrexate	1						
12mg/m ² Romidepsin Days 1 & 15(Q28)	2						
	3						

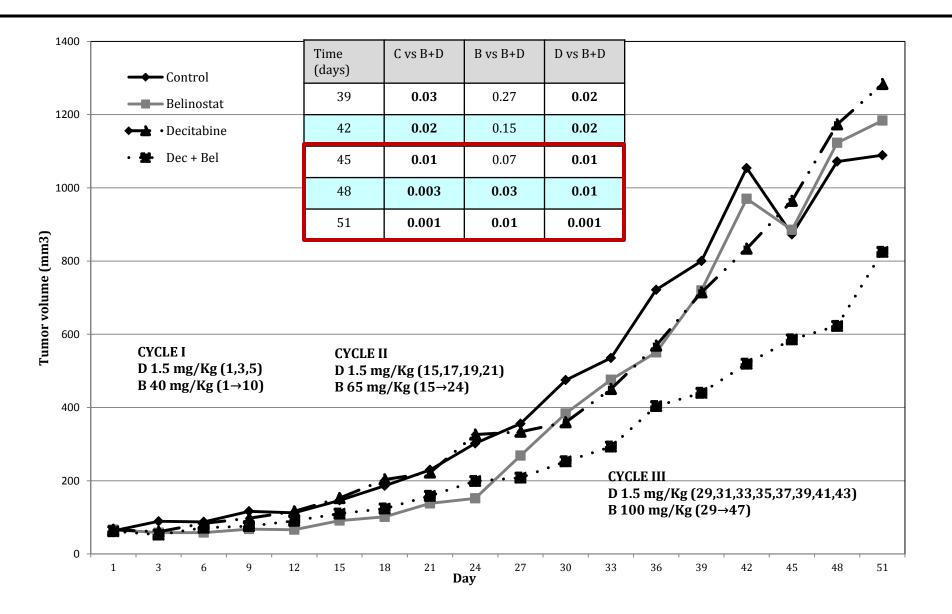
EVIDENCE FOR SELECT EMERGING DOUBLETS IN PTCL: PURE TARGETING OF EPIGENETIC OPERATIONS

Romidepsin

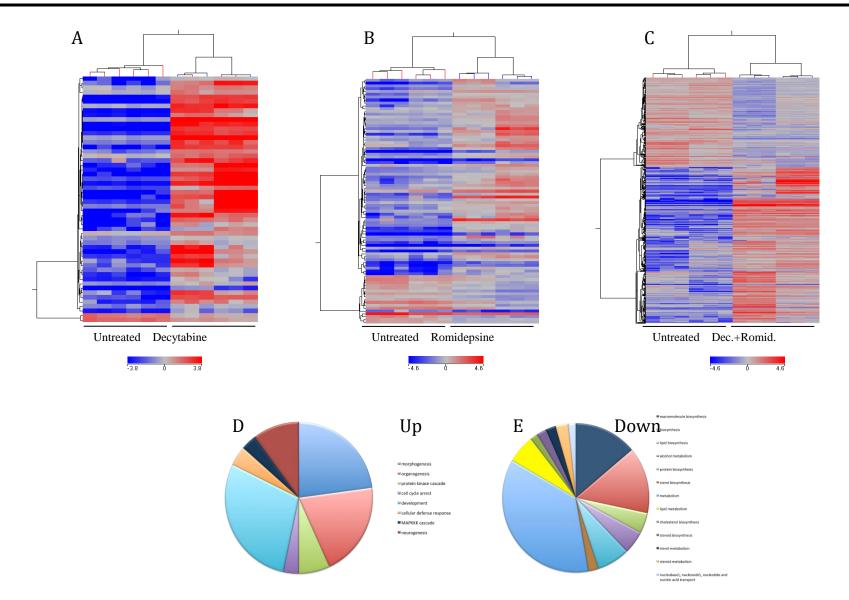

5-Azacytidine



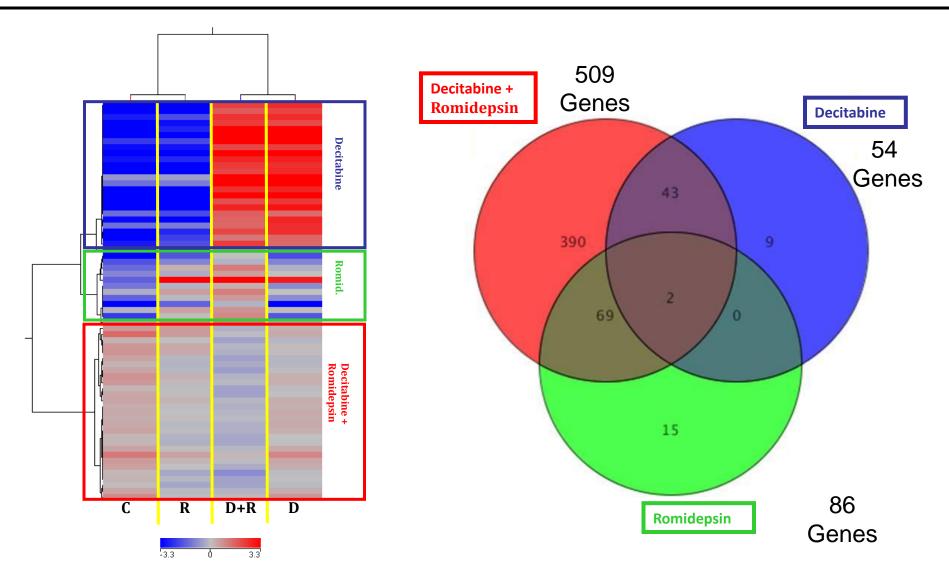
Decitabine plus HDAC Inhibitor Produced Marked Synergy in Panel of T-Cell NHL

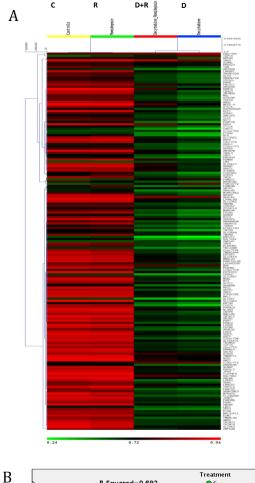


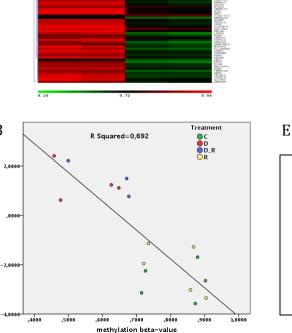
O'Connor et al. ASH, 2013.


THE COMBINATION OF HOME AND HDAC INHIBITOR SYNERGISTICALLY PRODUCES APOPTOSIS ACROSS PANEL OF T-CELL LYMPHOMAS: TCTCL H9

THE COMBINATION OF BELINOSTAT AND DECITABINE PRODUCE A STATISTICALLY SIGNIFICANT GROWTH DELAY IN SCID-BG MODEL OF HH

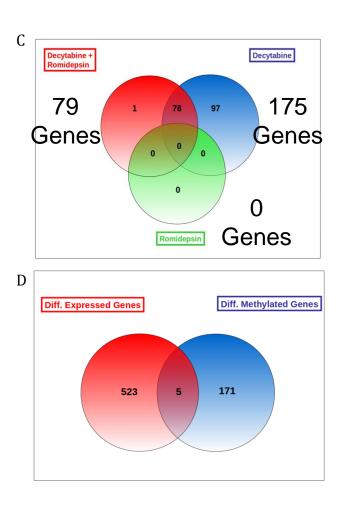


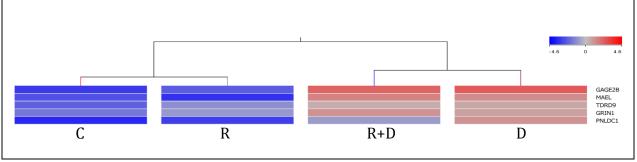

Supervised Hierarchial Clustering Based on GEP ?Reversal of the Malignant Phenotype in PTCL?



O'Connor, O.A. et al. ASH, 2013.

SUPERVISED HIERARCHIAL CLUSTERING OF GENE EXPRESSION REVEALS 390 UNIQUE GENES MODULATED BY THE COMBINATION ROMIDPESIN AND DECITABINE




normalized

gene_expr

Hierarchical clustering of T-cell Samples According to the Differential Methylation Pattern

- Scatter plot demonstrates inverse relationship between GE and differentially methylated genes in the MP analysis
- The Venn diagram shows the relationship among differentially expressed gene, with 5 common genes

PHASE 1-2 STUDY OF ORAL 5-AZACYTIDINE AND ROMIDEPSIN IN LYMPHOMA

<u>Cohort</u>	Patient	Disease	Prior Treatment	<u>Toxicities</u>	<u>Response</u>	
	1	Hodgkin's Lymphoma	12 lines of prior treatment	No DLT	PR	
	2	Follicular Lymphoma	4 lines of prior treatment	No DLT	PR	
1 100mg Azacitadine Days 1-14 (Q21)	3	T - Acute Lymphoblastic Lymphoma/Leukemia	3 lines of prior treatment	No DLT	CR	
10mg/m ² Romidepsin Days 8,15(Q21)	4	Hodgkin's Lymphoma	11 line of prior treatment	No DLT	POD	
	5	CD8+ Cytotoxic Cutaneous T-cell Lymphoma	8 lines of prior treatment	No DLT	PR	
	6	Hodgkin's Lymphoma	6 lines of prior treatment	No DLT	POD	
2 200mg Azacitadine Days 1-14 (Q21)	1	Diffuse Large B-Cell Lymphoma	9 lines of prior treatment	Delay of Cycle 2 due to Low Platelets	POD	
10mg/m ² Romidepsin Days 8,15(Q21)	2	Diffuse Large B-Cell Lymphoma	2 lines of prior treatment	DLT – Pleural Effusion	NE	
Days 0,10(@21)	3	Hodgkin's Lymphoma	9 lines of prior treatment	No DLT	SR	
3 200mg Azacitadine	1	Hodgkin's Lymphoma	6 lines of prior treatment	No DLT	POD	
Days 1-14 (Q28) 10mg/m ² Romidepsin	2	Hodgkin's Lymphoma	10 lines of prior treatment	N/A	SD	
Days 8,15(Q28)	3	Hodgkin's Lymphoma	16 lines of prior treatment	N/A	POD	

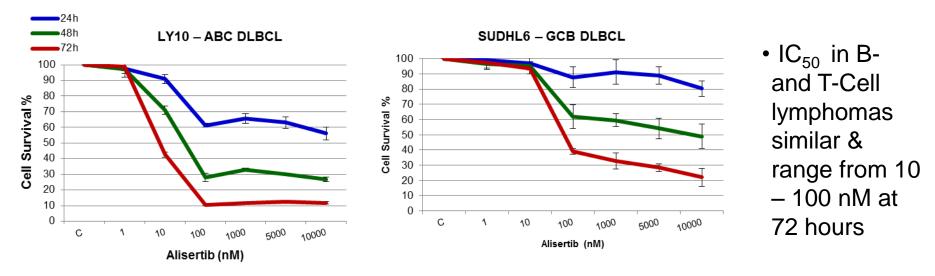
PHASE 1-2 STUDY OF ORAL 5-AZACYTIDINE AND ROMIDEPSIN IN LYMPHOMA 4 OF 4 PATIENTS WITH TCL RESPONDING (2 CR)

<u>Cohort</u>	Patient	Disease	Prior Treatment	Toxicities	<u>Response</u>
4 300mg Azacitadine	1	Adult T-Cell Leukemia / Lymphoma	3 lines of prior treatment	No DLT	CR
Days 1-14	2	Hodgkin Lympoma	6 lines of prior treatment	No DLT	POD
10mg/m ² Romidepsin Days 8,15(Q28)	3	Hodgkin Lymphoma	12 lines of prior treatment	No DLT	POD
5 300mg Azacitadine Days 1-14	1	Cutaneous DLBCL (Leg type)	4 lines of prior treatment	No DLT	POD
14mg/m ² Romidepsin Days 8,15(Q28)	2	ALK(-) ALCL	4 lines of prior treatment	No DLT	PR
Days 0,10(420)	3	Mycosis fungoides	9 lines of prior treatment	No DLT	TBD
6 300mg Azacitadine	1	Hodgkin's Lymphoma	6 lines of prior treatment	TBD	TBD
Days 1-14 (Q28) 14 mg/m² Romidepsin	2				
Days 8,15, 22(Q28)	3				
7 300mg Azacitadine Days 1-21 (Q28) 14 mg/m ² Romidepsin Days 8,15, 22(Q28)					

EVIDENCE FOR SELECT EMERGING DOUBLETS IN PTCL

Alisertib

Romidepsin

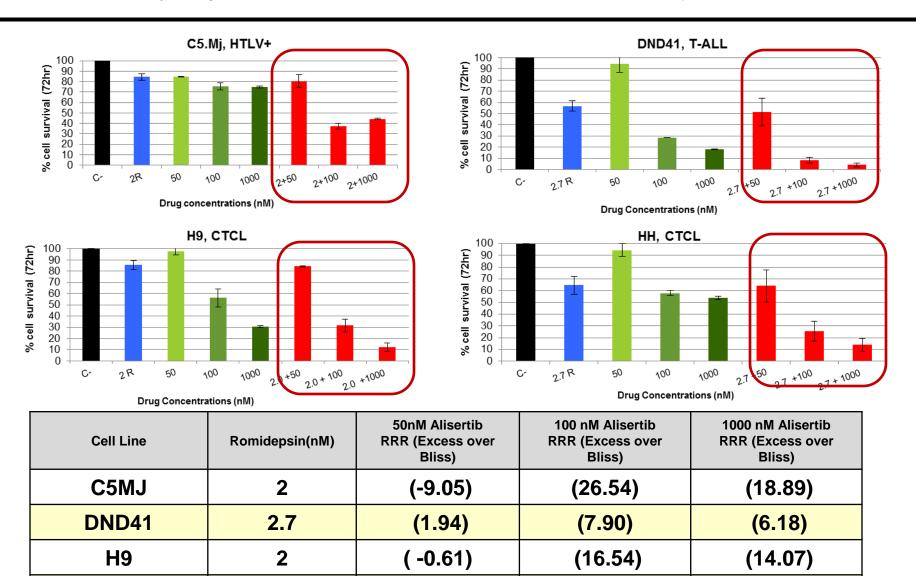

SWOG Phase 2 of Alisertib in PTCL

No. of patients	42 (37 evaluable)		
Median Age	62 (22-86)		
Prior therapies	3 (1-18)		
Refractory to last Rx	20		
ORR	24% (95%CI: 12-41%)		
CR Rate	22%		

Response	onse PTCL- NOS		Transfor med MF	ATLL	ALCL	NK/T
Ν	13	9	7	4	2	2
CR/PR	1/3	0/3	0/0	1/0	0/1	0/0
SD	1	2	2	0	1	1
POD	8	4	5	3	0	1

Omit **Transformed MF** = 33% (CR = 22%)

LENGTH OF EXPOSURE TO DRUG IS ESSENTIAL FOR ITS ACTIVITY



Alisertib IC₅₀ Values in B-Cell Lymphoma DLBCL

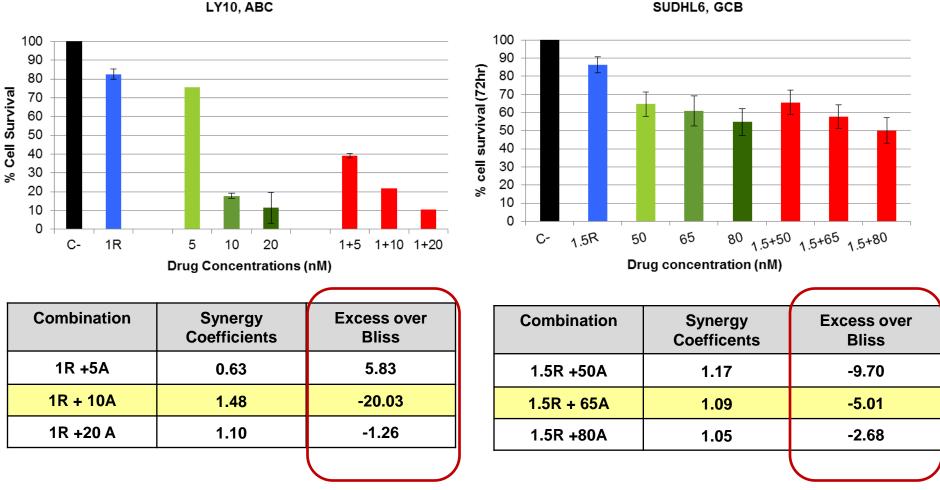
MCL

T(hrs)	Ly10	LY7	SUDHL-2	SUDHL6	Jeko-1	JVM2	Rec-1	Z-138
24h	>1000	N/A	N/A	>1000	N/A	N/A	N/A	N/A
48h	80	180	7.89	>1000	38	30	78	22
72h	10	81	10.12	100	29	10	87	13

Using High-Throughput Screening Techniques Alisertib Found to be HIGHLY Synergistic with Romidepsin.....ONLY in T-Cell Lymphomas

(-3.02)

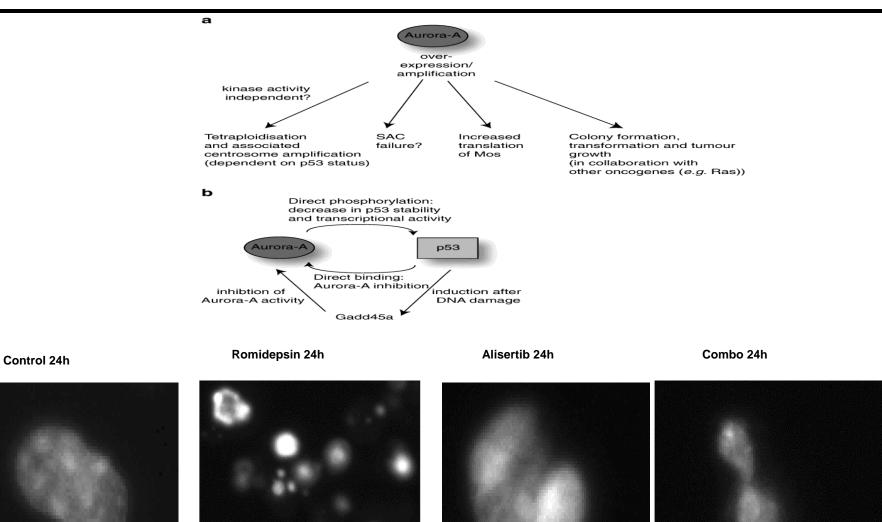
(12.05)

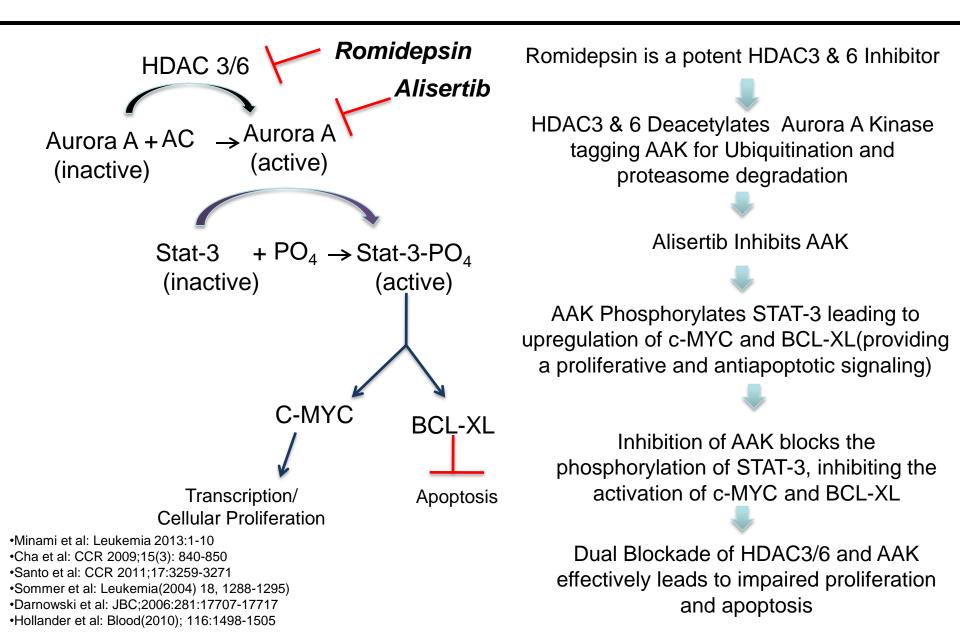

HH

2.7

Increasing Synergy

(21.01)


ALISERTIB DOES NOT SYNERGIZE WITH ROMIDEPSIN IN B-CELL LYMPHOMAS IS THIS AN EXAMPLE OF A LINEAGE SPECIFIC SYNERGY?


SUDHL6, GCB

.Nor did it synergize with pralatrexate and proteasome inhibitors

THE COMBINATION OF ALISERTIB & ROMIDEPSIN INDUCES CYTOKINESIS FAILURE

WORKING HYPOTHESIS FOR ROMIDEPSIN AND ALISERTIB SYNERGY

PHASE 1 TRIAL OF ALISERTIB PLUS ROMIDEPSIN FOR R/R AGGRESSIVE B- AND T-CELL LYMPHOMAS FANALE ET AL. ASH 2014

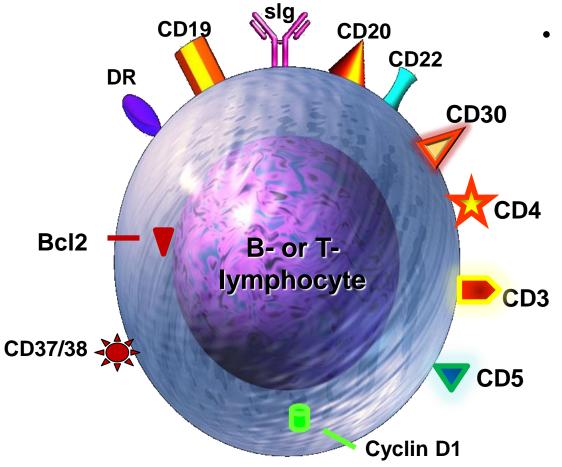
- 9 patients enrolled with 8 evaluable
- PTCL = 3; DHL = 3; DLBCL = 1; Transformed
 DLBCL = 1
- Grade 3/4 toxicities included neutropenia, thrombocytopenia, and anemia
- Responses included 1 CR in patient with PTCL in remission x 5 months (1 SD PTCL)
- Ongoing

DEVELOPMENT OF NOVEL BACKBONES IN T-CELL LYMPHOMA

- The T-cell lymphomas may be the protoypical diseases with a vulnerability to epigenetic manipulation
 - 3 HDAC inhibitors approved and only in TCL
- Recurrent genetic lesions exist in multiple pathways leading to epigenetic dysregulation (methylation) in many sub-types of PTCL
- Preliminary data suggests novel doublets have potent preclinical data
- Romidepsin combinations are consistently highly synergistic
- Building beyond 'doublets' will take more evidence or better rationale to refine options.
- Whole exome sequencing, methylation and cytokine array conducted on every patient on study.....biomarker discovery vs combination rationale

Columbia University Medical Center

THANK YOU!



A Comprehensive Cancer Center Designated by the National Cancer Institute ☐ NewYork-Presbyterian The University Hospital of Columbia and Cornell

FINDING AN R- FOR PTCL.....TARGET EPITOPES ON B- AND T- CELL LYMPHOCYTES

- Surface and cytoplasmic proteins targeted by antibodies are:
 - differentially expressed on different types of lymphoma
 - No one epitope has emerged as the optimal T- cell target

CENTER FOR LYMPHOID MALIGNANCIES AT COLUMBIA UNIVERSITY MEDICAL CENTER

Physicians

Owen A. O'Connor, M.D., Ph.D. Jennifer Amengual, M.D. Changchun Deng, M.D., Ph.D. Ahmed Sawas, M.D. Donald Colburn, M.D. Lauren Geskin, M.D. *(Dermatology / CTCL)*

<u>Nurses</u>

Ellen Neylon, NP Kathleen Maignan, NP Michael Smith, RN Emily Lichtenstein,

Administrative Staff Victoria Serrano, MPH Joanne Scibilla Erica Guerva Chermaine Ford, B.S. Joanna Duarte.

Research Study Coordinators

Molly Patterson, LMSW Celeste Rojas, B.S. Renee Lichtenstein,B.A Michele Malanga, BA

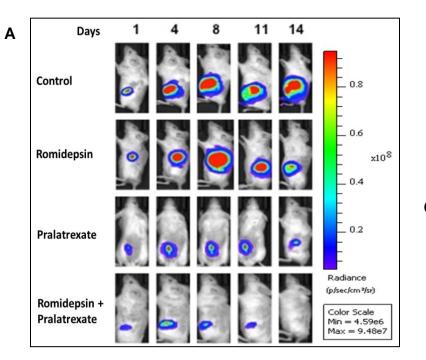
Laboratory Staff Luigi Scotto, Ph.D. Michael Mangone, Ph.D. Jennifer Amengual, M.D. Changchun Deng, M.D., Ph.D. Kelly Zullo, B.S. Xavier Jirau Serrano, B.S. Mark Lipstein, B.S. Maximillian Lombardo, B.S.

2 COLUMBIA UNIVERSITY MEDICAL CENTER

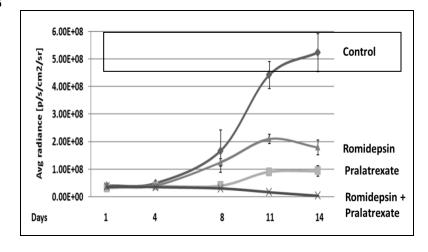
POTENTIAL NOVEL UPFRONT TREATMENT PARADIGMS FOR PATIENTS WITH PTCL

CONCLUSIONS

- Albeit early, preclinical data supports marked activity of many novel : novel drug combinations finding approvals in T-cell lymphoma
- Some appear to exhibit lineage specific synergy, while other combinations appear antagonistic (alisertib + pralatrexate; alisertib + proteasome inhibitor)
- Early Phase 1 clinical data suggests the combinations are well tolerated
- Early clinical activity is being seen is patients with heavily treated PTCL
- Clarifying rationale for a specific third agent or biological agent could pave the way for novel lineage specific platforms


PROPEL SUBSET: EFFICACY AS SECOND-LINE TREATMENT FOLLOWING CHOP FAILURE USE FDA APPROVED AGENTS IN R/R PTCL EARLIER!

Efficacy Assessments	Central Review Assessment	Investigator Assessment
	(n=15), %	(n=15), %
Tumour Response		
ORR (CR+CRu+PR)	7 (47)	6 (40)
CR	3 (20)	4 (27)
CRu	0 (0)	1 (7)
PR	4 (27)	1 (7)
SD	4 (27)	4 (27)
PD	4(27)	4 (27)
Not Evaluable	0 (0)	1 (7)
Median DoR	ND*	12.5 months
Median by PFS**	8.1 mths	7.4 months
Median OS	ND*	ND*


PROPEL: Prior ICE (n=20)

- ORR (CR + PR): 40%
- CR: 25% by Investigator Assessment
- Median Duration of Response: 16.2 months by Investigator Assessment

Efficacy Assessments	Central Review Assessment (n=20), %	Investigator Assessment (n=20), %
Tumor Response		
ORR (CR+PR)	8 (40)	8 (40)
CR	5 (25)	3 (15)
PR	3 (15)	5 (25)
SD	5 (25)	2 (10)
PD	6 (30)	4 (20)
Not Evaluable	1 (5)	6 (30)
Median DoR	16.2 mths	13.1 mths

В

Synergy demonstrated by activity seen at lower doses of each drug compared to MTD of each

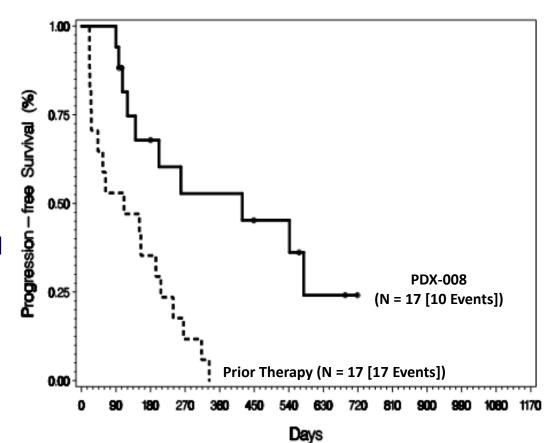
c	Treatment group	Estimated log-intensity (p-value)				
	Treatment group	4 th day	8 th day	11 th day	14 th day	
	Control	7.78 (<0.05)	8.09 (<0.05)	8.32 (<0.05)	8.55 (<0.05)	
	Romidepsin	7.75 (<0.05)	8.00 (<0.05)	8.20 (<0.05)	8.39 (<0.05)	
	Pralatrexate	7.58 (0.02)	7.74 (<0.05)	7.86 (<0.05)	7.98 (<0.05)	
	Romidepsin + Pralatrexate	7.49	7.24	7.06	6.87	

Hut78 T-cell lymphoma

PHASE II TRIAL OF ROMIDEPSIN IN RELAPSED OR PROGRESSIVE PERIPHERAL T-CELL LYMPHOMA FOLLOWING PRIOR SYSTEMIC THERAPY

• Patient population:

- 131 enrolled
- 130 with confirmed PTCL
- Failed \geq 1 prior systemic therapy
- Treatment regimen: romidepsin 14 mg/m², days 1, 8, and 15 q 28 days x 6 cycles; continued beyond 6 cycles in responding patients at investigator and patient discretion
- Primary endpoint: CR/CRu by independent review
- Secondary endpoints including: ORR, duration of response, TTP, tolerability, and safety

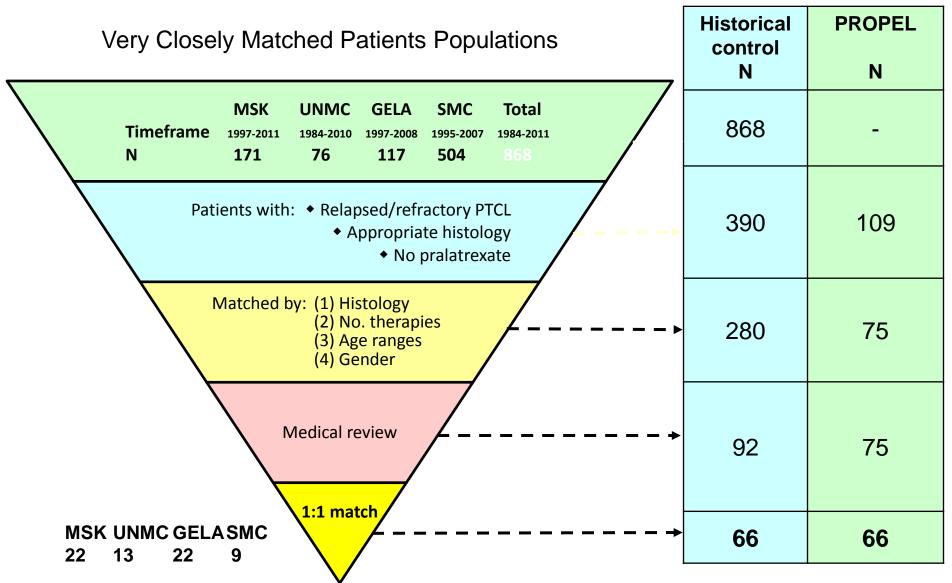

A COMPARISON OF DRUGS EVALUATED IN CLINICAL TRIALS IN RELAPSED/REFRACTORY PTCL

Drug	Disease subtypes	Ν	ORR/CR (%)	PFS/DOR (months)	Prior Therapies
Pralatrexate	PTCL 53% ALCL 15% AILT 12% (18% tMF,Blastic NK, ATLL)	111	29%/19%	3.5 / 12.4	3 (1-13)
Romidepsin	PTCL 53% AILT 21%	130	25%/15%	4 / 16	2 (1-8)
Brentuximab	PTCL 77% AILT 37%	35	41%/23%	6.7 / 2.6	2 (1-9)
Bendamustine	AILT 53% PTCL 38%	60	50%/28%	3 / 6.6	1 (1-3)
Belinostat	PTCL 64% AILT 18% ALCL 10%	129	25%/10%	1.6 / 13.6	2 (1-8)

RESPONSE TO PRALATREXATE CLEARLY ASSOCIATED WITH PROLONGED PFS IN PRIOR NON-RESPONDERS

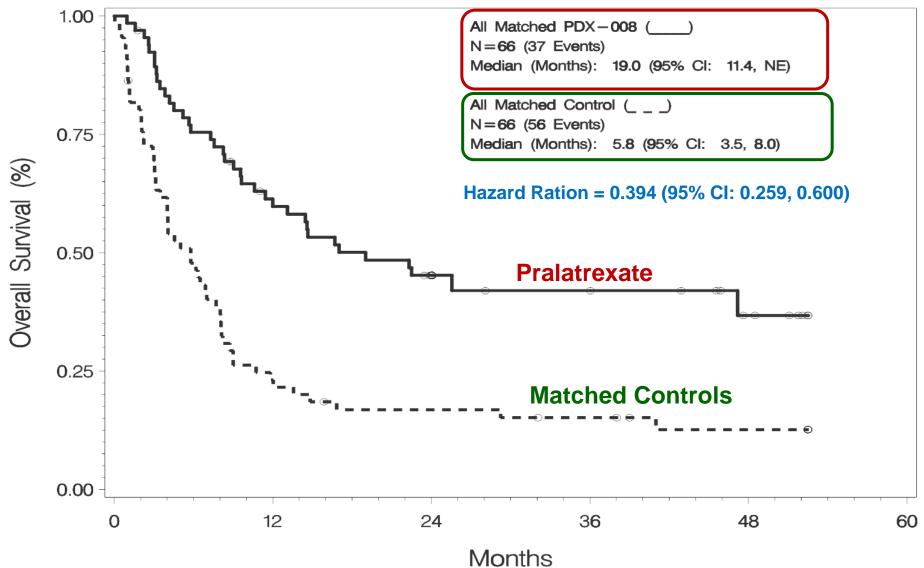
- Generation 69 patients had no response to last prior therapy
 - 17 of 69 (25%) responded to pralatrexate by central review
 - > 5 CRs, 12 PRs
 - 7 patients have response duration > 1 year
 - > 2 of 17 proceeded to SCT and remain in response at 21.6 and 56.5 months
 - Median PFS 13.8 months on pralatrexate vs 3.6 months on last prior therapy

PFS on pralatrexate vs last therapy for pralatrexate responders with no response to prior therapy

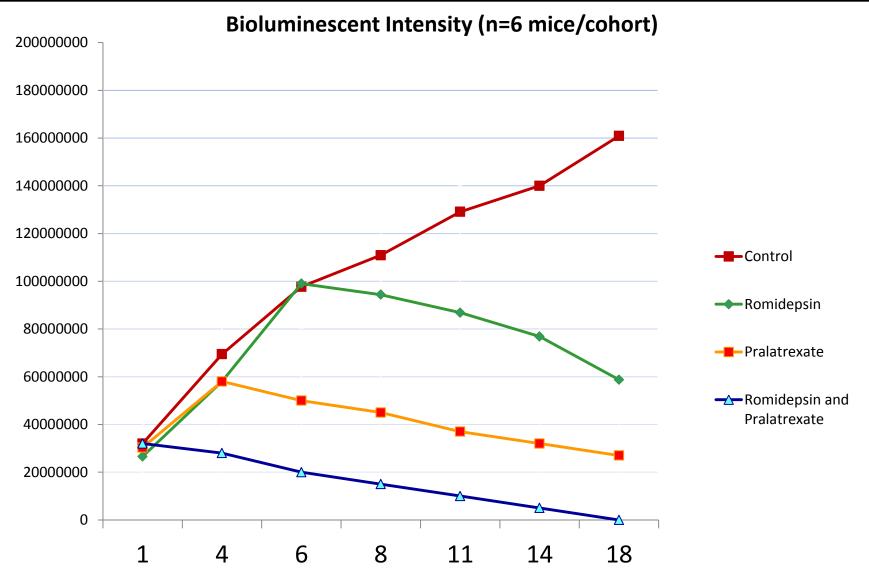


Courtesy Spectrum/Mundipharma

SUCCESSFULLY MATCHED CONTROL TO PDX-008


Matched Variables	PDX-008 (N = 66) %	Historical Control (N = 66) %	
	ATLL (HTLV 1+)	2	2
	ALCL, primary systemic type	15	15
Histology, n (%)	AITL	14	14
	PTCL-NOS	67	67
	T/NK-cell lymphoma-nasal	3	3
	1	30	30
Drier therepies $p(\theta)$	2	32	32
Prior therapies, n (%)	3	27	27
	4	11	11
Gender	Male/Female/Mis sing	62/38/0	58/29/14
Ago at start of matched therapy/ projetrovate	Median (years)	61.0	60.5
Age at start of matched therapy/ pralatrexate	< 65/≥ 65 years	61/39	61/39
Time from diagnosis to matched therapy/pralatrexate	Median (years)	13.7	11.5 Courtesy Charlie Morris

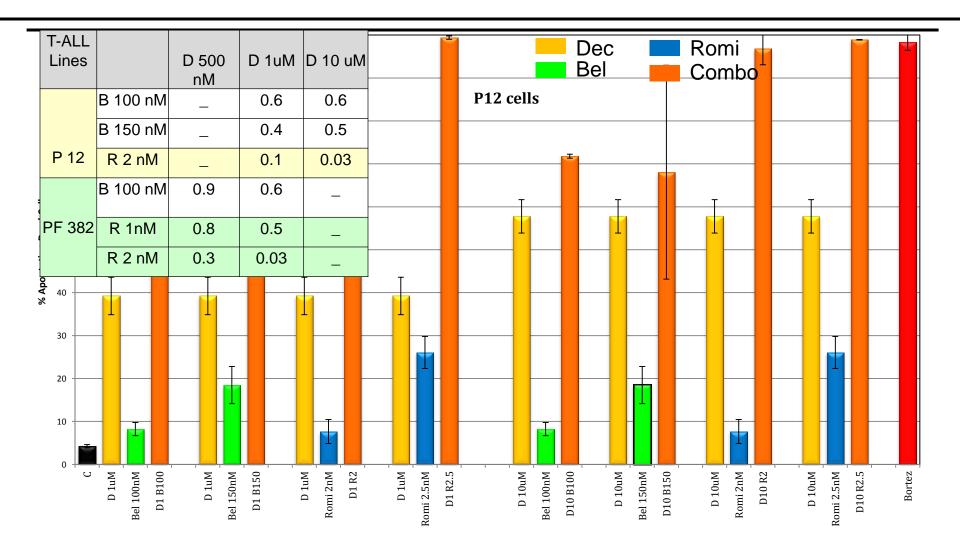
CASE MATCHING PROCEDURES USING 4 DATABASES FROM 3 CONTINENTS


Courtesy Spectrum/Mundipharma

SIGNIFICANT IMPROVEMENT IN OVERALL SURVIVAL VS MATCHED CONTROLS

Courtesy Spectrum/ Mundipharma

THE COMBINATION OF ROMIDEPSIN AND PRALATREXATE PRODUCES COMPLETE REMISSION IN T-CELL LYMPHOMA NOT SEEN WITH THE SINGLE AGENTS



Cumulative variance=73.63%

Principle Component Analysis (PCA) Demonstrates Clear Distinction and Unsupervised Hierarchial Clustering Divided Samples According to Cell Type and Treatment

THE COMBINATION OF HOME AND HDAC INHIBITOR SYNERGISTICALLY PRODUCES APOPTOSIS ACROSS PANEL OF T-CELL LYMPHOMAS: P12 T-ALL

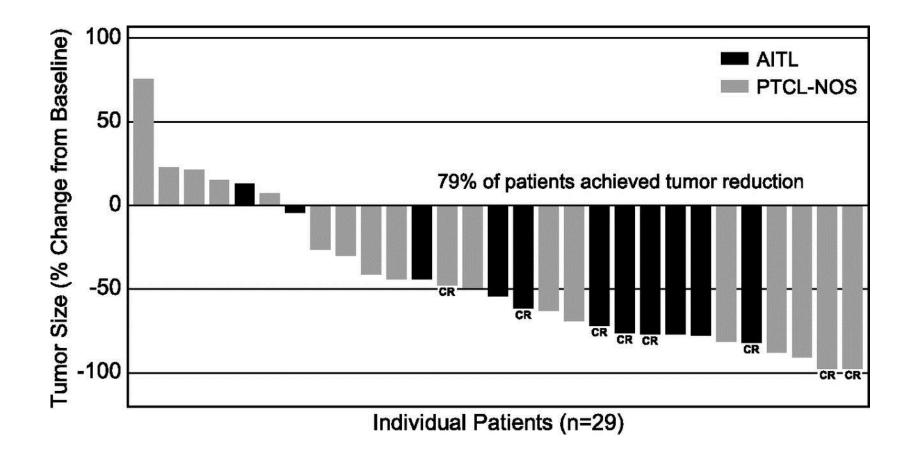
CD30 IS HIGLY EXPRESSED ACROSS MOST PTTCL SYBTYPES: INTERNATIONAL PTCL STUDY

Subtype (n)	CD30 Expression (%)			
	0-5%	6-49%	50-80%	>80%
PTCL-NOS (168)	54	32	7	7
AITL (167)	55	42	2	1
EATL (27)	74	11	4	11
ATLL (120)	50	37	8	5
Nasal NK/T (73)	53	34	6	7
Extranasal NK/T (30)	27	27	23	23

Courtesy Dennis Weisberger, University of Nebraska

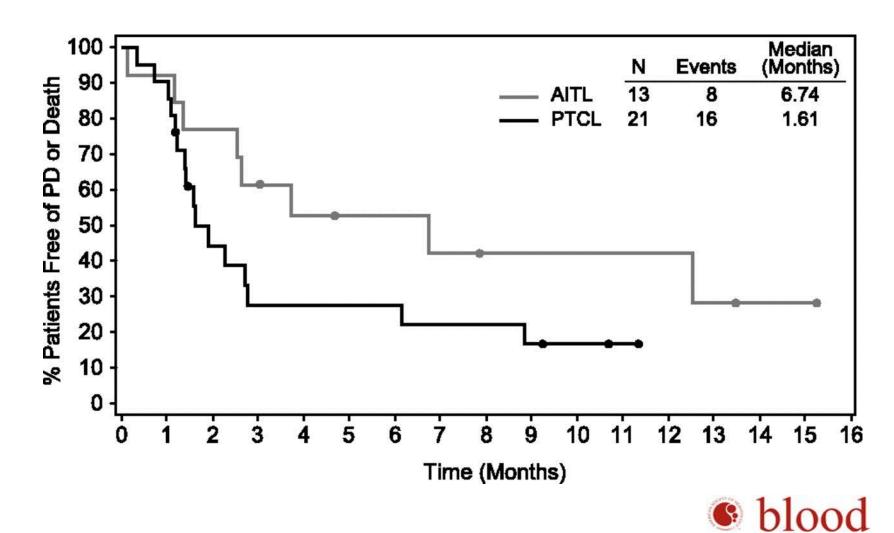
BRENTUXIMAB VEDOTIN IN RELAPSED / REFRACTORY ALCL: KEY RESPONSE RESULTS SUMMARY

	N=58
Objective response rate (95% CI)	86% (75, 94)
Median duration of OR (95% CI)	12.6 mo (5.7, –)
CR rate (95% CI)	57% (43, 70)
Median duration of response in patients with CR (95% CI)	13.2 mo (10.8, –)
Median PFS (95% CI)	13.3 mo (6.9, –)
Median OS	Not reached

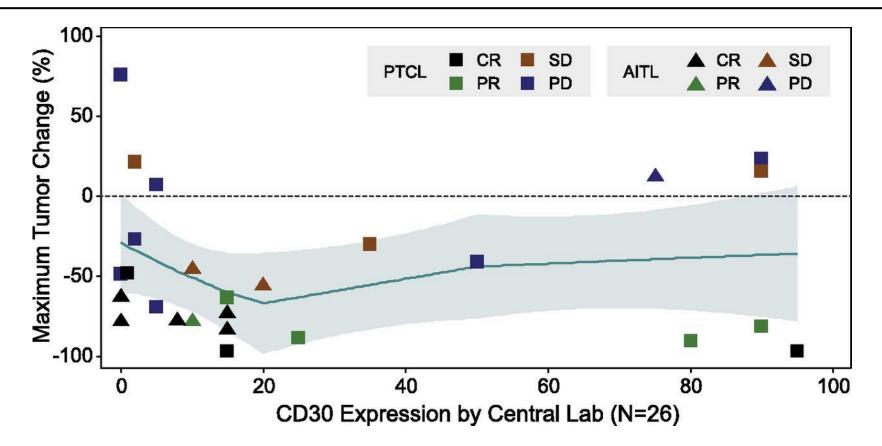

BRENTUXIMAB VEDOTIN IN RELAPSED PTCL (NON-ALCL PTCL)

	AITL (n=13)	PTCL-NOS (n=21)	Total (n=34)
ORR	7 (54%)	7 (33%)	14 (41%)
Complete remission	5 (38%)	3 (14%)	8 (24%)
Partial remission	2 (15%)	4 (19%)	6 (18%)
Stable disease	3 (23%)	3 (14%)	6 (16%)
Progressive Disease	3 (23%)	11 (52%)	14 (41%)
Progression free survival	6.74 mo	1.61 mo	2.6 mo

- Comparatively restricted patient population
- Short duration of PFS compared to other agents
- Not a heavily treated patient population

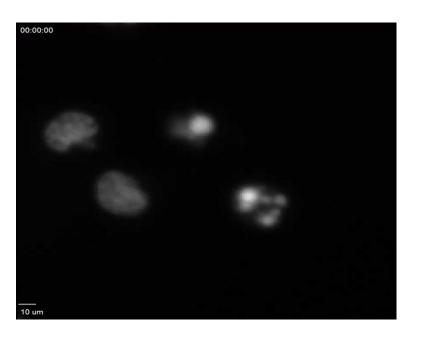

BRENTUXIMAB VEDOTIN IN RELAPSED PTCL (NON-ALCL PTCL)

MAXIMUM TUMOR SIZE REDUCTION FROM BASELINE



BRENTUXIMAB VEDOTIN IN RELAPSED PTCL (NON-ALCL PTCL) PFS by Histology Subtype

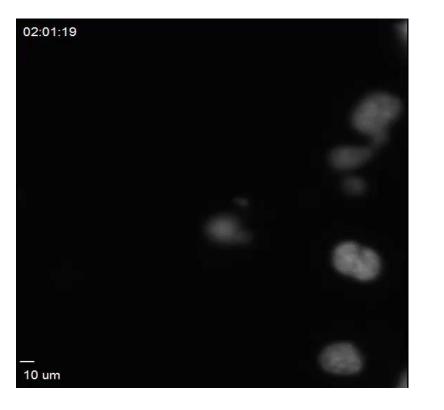
BRENTUXIMAB VEDOTIN IN RELAPSED PTCL (NON-ALCL PTCL)


MAXIMUM TUMOR SIZE DECREASE BY QUANTITATIVE CD30 EXPRESSION

Level of CD30 Expression Does not Correlate with Response

WE DEVELOPED THE FIRST LIVE CELL IMAGING OF LYMPHOMA CELLS IN CULTURE

Untreated Cells



Alisertib


- Untreated cells divide and replicate on a roughly every 24 hour basis
- Alisertib treated cells accumulate in mitosis (appearing as two conjoined cells)

LIVE CELL IMAGING OF LYMPHOMA CELLS TREATED WITH THE COMBINATION DEMONSTRATES GREATER INHIBITION OF GROWTH

Romidepsin cells

Alisertib in combination with Romidepsin cells

This Powerful Technique Allows Us to Directly Visualize and Understand What Happens to a Lymphoma Cell Following Treatment with New Drugs